Grâce à une progression fulgurante des performances et à un passage rapide du laboratoire aux applications pratiques, l’industrie a été capable de fournir aux fabricants de système d’éclairage des sources à base de LED capables de concurrencer les lampes traditionnelles sur la plupart des paramètres.
Sous la pression des écologistes, elles vont probablement se généraliser dans la vie courante et phagocyter l’un des derniers domaines d’application où l’on ne pouvait pas se passer de mercure. Il demeure un talon d’Achille, il leur faut encore pousser le CRI (Colour Rendering Index), une faiblesse qui reste CRItique pour certains usages. Mais de quoi s’agit-il ?
Lorsque sont apparus les premiers projecteurs à LED, divers avantages ont été mis en avant, en premier lieu celui de la flexibilité de la couleur, et de la facilité d’obtenir pratiquement n’importe quelle couleur de lumière, sans avoir à recourir à des filtres ou gélatines qui, avec les lampes classiques, ont tendance à brûler. Effectivement, les projecteurs à LED sont souvent utilisés pour donner des couleurs vives à un décor, à un contour, avec une propension à utiliser fréquemment des bleus profonds, des rouges vifs ou des mauves psychédéliques. Cela va bien pour les concerts de rock ou de Metal, où l’impact visuel en termes de choc coloré importe plus que la nuance.
Mais parmi les nombreuses couleurs que les projecteurs à LED sont capables de fabriquer, il y a aussi le blanc… ou plutôt les blancs. Et une fois de plus, c’est ce qui pose problème. Au fur et à mesure de la progression de la puissance, de la fonctionnalité et de la souplesse des projecteurs à source LED, ceux-ci sont adoptés par une quantité croissante de domaines d’activité, dont certains qui sont très attachés à leurs traditions et à des critères sévères et/ou particuliers. Il en va ainsi de la photo, de la télévision, du théâtre, du concert classique/jazz, de l’opéra et du ballet, de la mode, de la muséographie, etc.
Ces domaines exigent une lumière de haute qualité (on verra plus loin ce que cela signifie), et pour leurs usages critiques, ils conservent les projecteurs à lampe, ne passant aux LED qu’avec parcimonie, après moult essais et tentatives circonspectes et timorées. Car ce que cherchent ces gens, c’est une lumière blanche qui restitue parfaitement les couleurs de leurs onéreux décors, de leurs costumes chatoyants, de leurs personnages savamment maquillés, pour la photo, la télévision, ou plus simplement pour le plaisir des spectateurs live. Dans ces applications, les lumières de couleur ne sont utilisées qu’à petite dose, pour créer des ambiances particulières (coucher de soleil, nuit, etc.). Il semble qu’avec les LED, cet objectif ne soit pas facile à atteindre, du moins sans un compromis serré sur d’autres valeurs qui ont fait le succès de cette technologie.
La vision humaine, un prodige très imparfait !
La vision humaine recouvre plusieurs aspects cognitifs, parmi lesquels on a l’habitude de distinguer la sensation de luminosité (à laquelle on peut rattacher les concepts de luminance et d’éclairement), et la sensation de couleur, beaucoup plus compliquée à analyser, puisqu’elle se place dans un espace multidimensionnel. L’étude de la perception des couleurs indépendamment de celle d’intensité est le domaine de la colorimétrie.
La vision est la perception spatiotemporelle des lumières qui parviennent aux yeux. Les lumières (naturelles ou non) sont des ondes électromagnétiques, de même nature que les ondes radio, dont la longueur d’onde (λ) est comprise entre environ 400 nanomètres (nm) et 800 nm. Une lumière peut être monochromatique (une seule longueur d’onde, mais c’est rare) ou constituée de la somme de plusieurs rayonnements de différentes longueurs d’onde.
Le graphe de l’intensité lumineuse pour chaque longueur d’onde d’une lumière constitue son spectre. La forme du spectre peut prendre divers aspects : pour des lampes à gaz à basse pression (sodium, mercure), le spectre est constitué d’un petit nombre de » raies » (c’est à dire que la lumière est la somme de quelques rayonnements quasiment monochromatiques), alors que pour le soleil et pour toutes les lampes à incandescence, le spectre est continu.
C’est une sorte de » bruit » contenant une infinité de longueurs d’ondes entre les deux limites de l’analyse (et qui s’étend, sans doute, très largement au-delà). Les lampes à arc à haute pression ont un spectre dans lequel les raies sont immergées dans un fond continu et dépassent relativement peu. Quant aux LED de couleurs, la théorie prévoit en première approximation qu’elles émettent une lumière monochromatique (une seule raie, comme les lasers), mais en fait elles émettent une raie très large qui s’écarte sensiblement de la stricte monochromaticité.
L’un des problèmes vient de ce que la vision humaine ne se comporte pas vraiment comme un analyseur de spectre. Ainsi, elle perçoit la lumière naturelle comme étant » blanche « , mais elle s’accommode facilement de ce » blanc » qu’elle considère comme » blanc » dans diverses conditions (ciel dégagé, soleil voilé, ciel nuageux), et ne se rend compte des différences que dans des cas extrêmes (ciel totalement dégagé au-dessus de l’océan ou d’un champ de neige, ou coucher de soleil rougeoyant, ou lumière blafarde d’un éclairage fluorescent de type » industriel « ), alors que la photo est bien plus sensible aux différences de » couleur » du blanc.
Pire encore, l’œil n’est vraiment pas difficile (et c’est ce qui permet à la colorimétrie d’exister !), car il perçoit de manière identique des spectres dont le contenu est très différent. En effet, le mélange en proportion adéquate, de deux lumières dont les couleurs sont dites » complémentaires » est perçu comme du blanc. De même, il est d’usage que le mélange de trois lumières bien choisies (monochromatiques de préférence), permet de créer une sensation identique à celle de n’importe quelle couleur. C’est le fondement de la télévision en couleurs et de tous les systèmes de production et reproduction d’images numériques, et cela reste parfaitement d’actualité !
On notera que, en dehors du lieu géométrique des couleurs » pures » (c’est-à-dire monochromatiques) du diagramme CIE 1931, tout point, repéré par ses coordonnées chromatiques (qu’on appelle aussi chromaticité), définit une couleur sans préjuger du contenu spectral de la lumière ! Ainsi, on peut créer un » blanc » par le mélange de deux ou trois lumières monochromatiques seulement. Quand ce blanc paraît rigoureusement identique (à l’œil) au blanc de la lumière solaire, pourquoi se poser plus de problèmes ? Parce que ce que nous venons de dire s’applique à l’analyse et à la reconstitution des images (prise de vue, restitution sur écran ou sur papier), mais pas à l’éclairage.
Pourquoi ? Parce que la perception d’un objet qui n’est pas lumineux lui-même (c’est l’immense majorité des cas) dépend de trois choses : de l’œil humain, de l’objet lui-même (nature et état de sa surface), et de la lumière qui l’illumine. Ce troisième facteur est très important, car nous ne percevons un tel objet que par l’intermédiaire de la lumière qu’il réfléchit, puisqu’il est incapable d’en émette lui-même !
La surface d’un objet banal (même s’il s’agit du joli minois d’une artiste de renom) se comporte comme un filtre qui absorbe ou réfléchit la lumière qu’il reçoit, et ce, de manière différente selon la longueur d’onde. C’est cette sorte de » courbe de réponse » qui occasionne la perception de la couleur d’un objet optiquement passif. (voir figure 1).
Un objet dont la surface réfléchit tout de manière uniforme est perçu comme » blanc « , un objet qui absorbe tout de manière uniforme est perçu comme » noir » (ou » gris » si l’absorption n’est que partielle mais uniforme), un objet qui réfléchit beaucoup plus les lumières bleues que les autres lumières sera perçu comme » bleu » (avec différentes nuances de bleu selon la longueur d’onde principale de la réflexion et d’intensité ou de saturation selon la sélectivité de la réflexion), etc. De plus, la manière dont la lumière est réfléchie, soit conforme aux lois du dioptre optique (réflexion symétrique par rapport à la normale à la surface, réflexion spéculaire) ou avec une diffusion plus ou moins importante donnera lieu à la perception d’une surface brillante ou mate (voir figure 2). Cet aspect sort du domaine traité ici.
Note 1 : Les propriétés de réflexion peuvent être différentes selon les angles d’incidence et de réflexion. C’est en particulier le cas des surfaces » irisées « . Un cas emblématique est celui du papillon Apatura iris, dont la face intérieure des ailes varie selon les conditions d’éclairage (et peut-être aussi climatiques) entre le violet métallique et le marron en passant par le noir profond, les deux côtés apparaissant souvent de couleurs différentes. Pour cette raison, il est couramment appelé Grand Mars Changeant.
Pour que la couleur d’un objet soit perçue de manière précise, il est important que l’œil soit à même de juger précisément de la » courbe de réponse » de la surface de l’objet, et par conséquent il faut que l’objet soit éclairé avec une lumière qui contienne toutes les longueurs d’onde avec une intensité identique (similaire à la lumière solaire, pour laquelle l’œil de l’Homo sapiens a été » conçu » à l’origine), faute de quoi la sensation sera erronée. On peut faire une analogie avec un système audio qu’on teste au moyen d’un générateur effectuant un balayage en fréquence. Si l’amplitude du signal fourni par le générateur varie pendant le balayage, la courbe de réponse relevée sera erronée.
On peut objecter qu’on peut surveiller l’amplitude du signal du générateur pour compenser ses variations et corriger la mesure (ce qui est l’enfance de l’art…), mais justement, l’œil ne bénéficie pas de cette possibilité (sauf à avoir en permanence un réflecteur blanc de référence) et se base, congénitalement, implicitement et irrémédiablement, sur une lumière similaire à la lumière solaire (Note 2). On ne se refait pas ! Donc une » bonne » lumière est celle qui permet d’éveiller cette sensation colorée pour toutes les couleurs du monde réel. Cette faculté se quantifie, c’est l’indice de rendu des couleurs ou IRC, CRI pour les anglo-saxons.
Note 2 : on se réfère à la vision humaine » normale « . Pour ce qui est des cas particuliers, comme le daltonisme ou d’autres anomalies de la vision des couleurs, nous nous déclarons incompétents.
Température de couleur et IRC, deux paramètres non liés
A priori, on se dit que pour rendre les couleurs d’une manière suffisamment » neutre » afin de ne favoriser ni désavantager un domaine de couleurs des objets susceptibles d’être éclairés, il faut et il suffit que la lumière soit » blanche « . Il est évident qu’une lumière fortement colorée, a fortiori si elle est quasiment monochromatique, ne peut pas rendre correctement toutes les couleurs. C’est évident avec la lumière orangée des lampes au sodium à basse pression qui jalonnent nos routes et autoroutes, même si elles ne sont pas totalement monochromatiques (voir photos figure 3).
Mais même des lumières blanches en apparence peuvent avoir des performances assez médiocres. Par exemple, les tubes fluorescents de bas de gamme qui éclairent les locaux industriels donnent souvent aux personnes un teint blafard, et il ne viendrait à aucun metteur en scène l’idée d’éclairer une pièce de théâtre avec une telle lumière, sauf avec l’intention de créer une ambiance » glauque » hyperréaliste en accord avec le texte. Car l’œil est affecté d’une propriété particulière appelée métamérisme, qui fait que des lumières de contenu spectral très différent peuvent apparaître de la même couleur. Ainsi plusieurs sources lumineuses peuvent apparaître comme identiquement » blanches » tout en ayant des comportements très différents en matière de rendu des couleurs.
De plus, on sait parfaitement que la notion de » blanc » est parfaitement subjective, et même la lumière du soleil ne peut pas être prise sans précaution comme lumière » blanche » de référence, car sa colorimétrie varie selon que le ciel soit dégagé et bleu, couvert et blanc laiteux, et que le soleil soit au zénith ou soit proche de son lever ou de son coucher, auquel cas la lumière prend une teinte qui vire progressivement au jaune, à l’orangé, puis parfois au rouge caractérisé, tout en conservant un excellent rendu des couleurs !
La couleur qui lave plus blanc ?
La colorimétrie est une science parfois déroutante, d’autant plus qu’on est amené à la pousser dans des extrémités peu raisonnables au fur et à mesure qu’apparaissent de nouvelles sources lumineuses. Les vraies lumières blanches sont celles qui découlent du » rayonnement du corps noir « . La théorie montre que ce fameux corps imaginaire qui est censé absorber tout rayonnement qui l’atteint, émet lui-même un rayonnement électromagnétique de spectre continu dont les caractéristiques (longueur d’onde du maximum d’émission, densité spectrale de puissance…) dépendent de la température à laquelle est porté ce corps.
Plus la température du corps augmente et plus les longueurs d’onde auquel ce rayonnement a une densité spectrale de puissance intéressante raccourcissent, et à des températures suffisantes, le spectre comprend une partie de lumière visible. C’est le principe des lampes à incandescence, un filament métallique étant peu ou prou assimilable à un corps noir. L’aspect de la lumière émise par le corps noir dépend de la température de celui-ci, depuis des rougeâtres, orangés et jaunâtres (lumières dites » chaudes » jusqu’à des blancs agressifs et légèrement bleutés (lumières dites » froides « ), en passant par des lumières blanches plus neutres.
Dans le diagramme chromatique de la CIE (1931), (voir figure 4.) on peut représenter chacune des lumières émises par le corps noir à différentes températures par un point de coordonnées (x,y). Le lieu géométrique de ces points (lieu ou courbe de Planck) est une courbe qu’il est d’usage de graduer en températures (avec la remarque que, paradoxalement, les lumières » chaudes » correspondent aux températures les plus basses et que les lumières » froides » correspondent aux températures les plus élevées).
Lorsqu’une lumière quelconque, quelle que soit son origine, a une chromaticité telle qu’elle se trouve sur cette courbe, la température du corps noir au point correspondant est la température de couleur de la lumière en question. On notera que les températures se mesurent en Kelvin (K), anciennement degrés Kelvin (°K).
Lorsque la chromaticité de la lumière considérée est très en dehors de cette courbe, la notion de température de couleur n’a plus beaucoup de signification, au moins au sens de la physique. Mais avec les sources diversifiées actuelles, ce cas est fréquent et la notion de température de couleur a été étendue pour prendre en compte ces cas.
Ainsi la Commission Electrotechnique Internationale (CEI) définit la » température de couleur proximale » comme la » température du radiateur de Planck (Note 3)dont la couleur perçue ressemble le plus, dans des conditions d’observation spécifiées, à celle d’un stimulus donné de même luminosité » et préconise une méthode pour la déterminer (voir représentation graphique sur les figures 5. et 6.).
Note 3 : le » corps noir » est ainsi appelé en référence au physicien allemand Max Planck, qui a découvert les lois de l’émission lumineuse, et aux équations qui portent son nom et régissent l’émission du corps noir.
L’acception anglo-saxonne est Correlated Colour Temperature, souvent désignée par l’acronyme CCT. Cela a été formalisé de diverses manières, mais ne pose guère de problème dans la pratique à l’heure actuelle, car les calculateurs ont fait des progrès considérables et les algorithmes permettant d’évaluer une CCT sont intégrés dans les instruments de mesure (spectromètres, spectrocolorimètres…).
Bien entendu, la notion de température de couleur (on omet le plus souvent l’épithète » proximale « ) n’a de signification que si la lumière est suffisamment proche d’une émission d’origine thermique. La CIE donne des indications sur la distance qu’on ne devrait pas dépasser entre le point représentatif de la chromaticité de la lumière considérée et le lieu de Planck. Si on force vraiment la dose, cela devient criant, car pour une lumière donnée, le point correspondant peut être équidistant de deux points du lieu de Planck, ce qui crée une ambiguïté.
Le blanc qui ne déteint pas
Pour restituer correctement les couleurs des objets, la lumière qui les illumine doit être capable d’exciter de manière exhaustive, dans tout le spectre visible, le filtre constitué par la surface de l’objet. Contrairement à la température de couleur proximale, qui ne renseigne absolument pas sur la nature de la lumière, le rendu des couleurs dépend essentiellement de sa richesse spectrale et non de sa température de couleur. Quantifier le rendu des couleurs n’est pas une chose simple.
On utilise de manière générale et consensuelle un indice (IRC ou CRI) qui est un nombre compris entre 0 et 100, qui traduit l’aptitude d’une source à restituer les couleurs en comparaison avec une source de référence (considérée comme » parfaite » par définition). Les premiers travaux de la CIE sur le sujet remontent à 1948, et ont abouti en 1965 à une recommandation, puis après quelques améliorations esquissées à partir de 1974, à une nouvelle publication en 1995, et c’est celle-ci qui fait encore autorité de nos jours.
L’idée de base est de faire la moyenne des différences entre le rendu colorimétrique de 14 échantillons d’objets colorés de référence (voir figure 7.) définis dans le système de couleurs de Munsell (espace où chaque couleur est défini en coordonnées cylindriques quantifiées par intensité, saturation et teinte, voir figure 8.) éclairés par la lumière à qualifier et par une lumière de référence de même température de couleur proximale.
On notera que les teintes ne sont pas toutes saturées et correspondent plutôt à des nuances des scènes courantes (en particulier les teintes » chair « ). Quant aux sources de référence, il s’agit d’un radiateur de Planck (autrement dit le » corps noir « ) pour les températures inférieures à 5000 K et d’un illuminant D ( » lumière du jour « ) pour les températures supérieures ou égales à cette valeur. Dans la pratique, tout cela a été traduit en équations mathématiques et s’obtient plus facilement à partir d’un calcul numérique opéré sur le relevé du spectre de la lumière à étudier, quantifié avec un pas déterminé en longueurs d’ondes (d’ailleurs, la publication de 1995 de la CIE est assortie de deux versions du programme informatique effectuant ce calcul).
Ainsi, la palme de 100 est attribuée ex-aequo à la lumière du jour et à la lumière des lampes incandescentes (on s’en douterait un peu, l’une étant la lumière la plus naturelle qui soit, et préférée des photographes, et l’autre étant une réalisation technologique très proche du fameux » corps noir » !) Le rendu des couleurs est considéré comme excellent entre 90 et 100, bon entre 80 et 90, moyen entre 70 et 80, mauvais entre 50 et 70 est exécrable au-dessous de 50.
Les pires sources sont les lampes au sodium dont l’IRC est de l’ordre de 20-25, les tubes fluorescents couvrent de 60 à 90 (certaines variantes particulières vont jusque 98) et les LED blanches de 65 à 95. Dans chaque catégorie de source (lampe à arc ou à décharge, lampes fluorescentes, sources LED), il existe des variantes à IRC élevé adapté aux applications » spéciales » exigeantes en la matière : prise de vues (photographie/cinéma/télévision), muséographie, spectacle. Nous verrons dans une seconde partie quelles solutions technologiques permettent d’y parvenir.
Quelle mesure pour l’IRC ?
La méthode de détermination de l’IRC est assez controversée pour les LED et il se peut qu’il y ait des changements dans ce domaine. En effet, le calcul à partir d’une moyenne d’un nombre relativement faible d’échantillons de couleurs ne rend pas compte de certains comportements de la lumière des LED, pour lesquelles il peut arriver de tous les échantillons soient bons sauf un seul qui est très mauvais. Dans ce cas, la valeur de l’IRC traduit mal de malaise subjectif qui est ressenti avec de telles lumières. Selon certains auteurs, la manière la plus courante d’évaluer le rendu des couleurs convient bien aux lampes fluorescentes mais pas aux LED.
A IRC égal (autour de 80 par exemple), les LED seraient beaucoup plus satisfaisantes que les lampes fluo… Il est vrai que l’allure des spectres de ces différent types de sources est souvent très différente (voir figure 9.), mais dans le cas des LED blanches à émetteur bleu + phosphores, le principe est tellement proche que les différences de comportement subjectif sont délicates à justifier (et d’ailleurs, dans certains cas, les résultats sont aussi excellents car les solutions techniques convergent).
Formes typiques des spectres de différentes sources. Peut-on espérer qualifier en termes de rendu des couleurs des sources qui ont des spectres de types aussi différents, en permettant leur comparaison à l’aide d’un seul nombre entre 0 et 100 ? C’est ce que prétend réaliser l’IRC. Mission impossible ?
En tout état de cause, on va donc voir apparaître différentes sortes d’évaluation dans les fiches de caractéristiques des appareils. Souci louable de rendre la mesure plus significative du résultat subjectif, mais risque de confusion dans les esprits et de difficultés de comparer des produits d’origines diverses. L’exigence augmente en matière de qualité d’éclairage, ce qui se traduit par un intérêt croissant pour l’évaluation du rendu des couleurs qui n’apparaît pas assez cohérente pour certaines applications. Le malaise vient peut-être du fait que la caractérisation de la qualité de la lumière par un nombre unique semble être une simplification excessive qui peut conduire à des interprétations erronées du comportement d’une source lumineuse en situation.
De nouveaux procédés d’évaluation sont donc développés régulièrement (voir CIE 177:2007 qui recommande le développement d’un nouvel indice de rendu des couleurs). Plus de 25 méthodes ont été proposées, mais aucune n’a encore obtenu un consensus international. Toutefois, la méthode développée par l’IES (Illuminating Engineering Society), appelée TM-30-15, datant de 2015 et notamment recommandée par la société de service française PISEO, basée à Lyon (www.piseo.fr), commence à être largement diffusée.
Elle a les caractéristiques suivantes :
– Prend en compte 99 échantillons d’objets colorés de référence pour le calcul de l’indice de référence Rf (au lieu des 8 + 7 du Ra de l’IRC)
– Dispose de sources de référence continues suivant les températures de couleurs (au lieu des 3 de l’IRC)
– Propose également une représentation graphique des résultats, ce qui est bien plus riche en termes d’informations
– Enfin, elle offre des résultats plus détaillés en fournissant notamment un indice de Gamut (Rg, qui représente la saturation) mais également des informations sur le rendu de couleurs précises (rendu de la peau ou 16 groupes de différentes couleurs).
Le système d’évaluation du rendu des couleurs IES TM-30-15 regroupe et synthétise les nombreuses recherches en cours depuis plusieurs années, élaborées par des représentants de fabricants, de normalisation et de services de recherche issus de l’industrie de l’éclairage.
En octobre 2015, la CIE déclarait encourager cette démarche, mais en même temps, LightingEurope, l’association européenne de l’éclairage, clamait son opposition à changer de méthode de calcul de l’indice de rendu des couleurs (LightingEurope Position Paper on Color Quality du 6 octobre 2014), arguant du fait qu’une telle modification ne ferait que perturber le monde de l’éclairage, » à moins, précisait le communiqué, qu’un consensus scientifique ne vienne apporter la preuve d’améliorations notables « . Ce qui semble pourtant quasiment chose faite aujourd’hui.
On va donc voir cohabiter différentes évaluations de la qualité des sources en attendant l’apparition d’un consensus international fort, ce qui risque de prendre beaucoup de temps… Il reste à espérer que les industriels publieront les différents résultats côte à côte (par exemple les indices Ra et Rf), ce qui, dans la pratique, n’est peut-être pas si difficile que cela, si tant est que ces différents indices peuvent s’obtenir à partir d’un calcul réalisé sur une mesure du spectre de la source à qualifier, faite avec une quantification suffisamment fine.