Liquides ou cristaux ? Ces substances amorphes ont des propriétés d’organisation des molécules qui les rapprochent de l’état cristallin et se traduisent par des propriétés électriques et optiques particulières. Voici comment on peut les utiliser pour projeter des images
Dans la précédente partie, nous avons décrit les sources lumineuses, mais on s’en doute bien, l’essentiel est dans la partie modulateur optique de l’appareil, qu’on appelle parfois « moteur optique » par mimétisme avec l’idiome anglo-saxon « optical engine ».
C’est là que se concentrent les principes fondamentaux de la vidéoprojection, et les difficultés technologiques, comme nous l’avons bien ressenti à la lecture de notre rubrique archéologique. Faisons un point de l’état de l’art…
S’affranchir des problèmes de convergence
Comme nous l’avons vu dans notre historique, les appareils trichromes les plus puissants utilisent trois tubes cathodiques ou trois relais optiques, chacun possédant son propre objectif. Au niveau de sa réalisation technique, cette solution paraît d’une simplicité biblique (l’optique est réduite à sa plus simple expression), mais elle est assortie d’une multitude d’inconvénients :
– Pour des raisons de coût, les objectifs sont rudimentaires et à focale fixe,
– Il faut effectuer la mise au point et les réglages pour chaque objectif,
– La superposition des couleurs (convergences) s’effectue directement sur l’écran, et l’ensemble des réglages de superposition est à refaire au moindre déplacement de l’appareil.
L’Eidophor (pour les hautes luminosités) et les projecteurs à trois tubes cathodiques se sont toujours contentés de cette disposition, mais il faut bien reconnaître que les utilisateurs étaient à cran. La vidéoprojection en location ou prestation était un véritable calvaire et il n’était pas rare de devoir refaire les superpositions en cours de spectacle, voire passer son temps à leur courir après, car divers phénomènes, comme les gradients thermiques dans le châssis de l’appareil provoquaient déformations et gauchissements au fur et à mesure de son échauffement. Les électroniques étaient aussi sujettes à des dérives aux fâcheuses conséquences.
Le premier fabricant à s’affranchir de ces problèmes en sortant un projecteur trichrome, tritube à un seul objectif a été Hughes-JVC avec un modèle à relais optiques ILA (voir photo d’ouverture).
Il suffisait de combiner les trois faisceaux dans un prisme à diagonales collées (voir figure 1 et figure 2), et le tour était joué !
Un tel projecteur pouvait être déplacé sans trop de conséquences sur les réglages, et la mise au point s’effectuait par le réglage d’un seul objectif, comme sur les appareils modernes.
Malheureusement, cela ne pouvait raisonnablement fonctionner qu’avec des relais optiques ILA de plus petite taille que sur les projecteurs à trois objectifs, et les projecteurs à un seul objectif étaient donc moins performants. Cela appelait donc à la conception de relais optiques à la fois miniaturisés et performants… et donnait donc ainsi le sens de l’histoire!
Cette configuration a été largement reprise sur les projecteurs à cristaux liquides, qui ont abandonné la configuration décrite par la figure 7 de notre épisode intitulé « l’émergence des relais optiques ».
Les cristaux liquides conventionnels : LCD, Tri-LCD, 3LCD
Les cristaux liquides et leurs propriétés. Mettons tout de suite les choses au point : les cristaux liquides ne sont ni des cristaux, ni des liquides ! Ce sont des matières organiques (c’est-à-dire contenant essentiellement du carbone et de l’hydrogène), d’aspect amorphe. Ils ne présentent ni les arêtes vives, ni les facettes lisses et brillantes qui caractérisent ce qu’on appelle communément les cristaux. En revanche, ils possèdent des propriétés d’organisation des molécules qui les rapprochent, de ce point de vue, de l’état cristallin et se traduisent par des propriétés électriques et optiques particulières.
Les cristaux liquides ont été (officiellement) découverts en 1888 par le botaniste autrichien H. Reinitzer qui, précédé par Planer en 1861, remarqua des phénomènes optiques chatoyants avec des esters de cholestérol. En 1963, Williams, de la compagnie RCA, montra que la propagation de la lumière dans ces substances pouvait être modifiée par l’application d’un champ électrique. Cinq ans plus tard, Heilmeyer et ses collègues, de la même société, réalisèrent un afficheur qui utilisait cette propriété. Cela marquait le début des LCD (“ Liquid Crystal Displays ”, appellation désormais obligée des dispositifs de visualisation à cristaux liquides).
Les cristaux liquides peuvent changer de phase (comme un matériau qui peut être solide, liquide ou gazeux selon la température et la pression), et cet état d’ordre des molécules est intermédiaire entre le liquide (désordre total) et le solide (ordre figé).
Contrairement aux cristaux solides, dont les atomes ont un ordre de position à longue distance, l’ordre qui s’instaure naturellement dans les cristaux liquides est essentiellement un ordre d’orientation des molécules à moyenne distance, avec dans certains cas une composante d’ordre de position. L’orientation moyenne des molécules de cristaux liquides, de forme allongée, est décrite par un vecteur appelé directeur.
On distingue quatre phases dites cholestérique, nématique, smectique et colonnaire. Les cristaux liquides utilisés dans les applications qui nous intéressent ici sont de type nématique (c’est à dite étymologiquement qu’ils ressemblent à des vers). Il s’agit de molécules allongées (voir figure 4).
Et dans la phase nématique, en l’absence de contrainte particulière, leur tendance naturelle est de s’aligner, toutes parallèles, dans une même direction (voir figure 5).
Toutefois à l’interface avec un solide ou un liquide, l’orientation des molécules peut subir une influence. Plus ou moins marquée et définitive, cette influence a reçu l’appellation d’ancrage.
Divers types d’ancrage peuvent être réalisés, dans une seule position, avec plusieurs directions possibles (ancrage bistable ou multistable) et différentes orientations par rapport au plan d’interface. Dans une lame de cristaux liquides, on arrive donc à créer ainsi des structures planaires ou homéotropes (voir figure 6).
Chaque structure de cristaux liquides possède des propriétés optiques particulières, depuis la sélectivité en longueur d’ondes (cholestériques) jusqu’aux biréfringences linéaire et circulaire. La structure qui a permis de réaliser les premiers écrans à cristaux liquides est la structure nématique en hélice (“ Twisted Nematic ” ou TN).
Dans la structure TN, on réalise une couche mince de cristaux liquides entre deux lames transparentes aux interfaces desquelles les ancrages sont perpendiculaires. De ce fait le directeur tourne progressivement de 90° lorsqu’on traverse l’épaisseur de la couche (voir figure 7).
Il s’ensuit une biréfringence circulaire avec un pouvoir rotatoire de 90°. Cela signifie que si une lumière polarisée linéairement traverse une lame de structure TN, la polarisation de la lumière en sortie est perpendiculaire à celle de la lumière incidente. Si on place une telle cellule à cristaux liquides entre deux polariseurs linéaires d’axes parallèles, la lumière est bloquée. Si en revanche, on la place entre polariseurs croisés, la lumière passe (toutefois, la transmission n’est, dans le meilleur des cas, que de 50% en lumière naturelle du fait de la perte de la composante croisée).
Par ailleurs, les cristaux liquides possèdent des propriétés électriques anisotropes. L’orientation des molécules nématiques peut être influencée par un champ électrique ou magnétique extérieur. En présence d’un champ électrique extérieur, selon la constitution des molécules, elles tendent à aligner leur grand axe parallèlement à la direction du champ (anisotropie diélectrique positive) ou perpendiculairement à cette direction (anisotropie diélectrique négative).
Pour une lame de cristaux liquides nématiques, la méthode de commande la plus commode (la plus efficace, nécessitant les niveaux d’énergie les plus faibles) consiste à utiliser un champ électrique transversal appliqué entre les deux faces au moyen d’électrodes transparentes. Le matériau traditionnel qui convient pour cela est l’oxyde d’indium et d’étain (ITO), qu’on a déjà vu dans d’autres relais optiques comme le tube Titus et l’ILA.
Avec des cristaux liquides à anisotropie positive, il naît alors un conflit entre l’énergie d’ancrage et l’énergie du champ électrique. A partir d’une certaine valeur de celui-ci apparaît une déformation (c’est à dire une déviation du directeur par rapport à sa valeur initiale). C’est la transition de Freedericksz.
Si la cellule TN est placée entre polariseurs croisés, la transmission diminue progressivement à partir de cette transition jusqu’à une extinction quasi-totale de la lumière émergente (voir figure 8 et figure 9). Dans le cas où les polariseurs sont parallèles, la lumière commence à émerger à partir de cette transition jusqu’à un maximum théorique absolu de 50% de transmission (pour une lumière naturelle).
Le milieu optique actif d’un (micro-)écran LCD contient, en plus des molécules nématiques, diverses substances destinées, notamment, à assurer la stabilité de la phase nématique dans les conditions de température rencontrées dans l’usage normal, et aussi des ions résiduels qui résultent de la fabrication du produit en phase liquide.
L’application d’un champ électrique continu pour contrôler l’orientation des molécules n’est pas possible, car elle aboutit au déplacement de ces ions et de ces molécules dipolaires, donc à la décomposition du mélange. Au pire, elle entraîne des phénomènes d’électrolyse et la dégradation irréversible du dispositif. En conséquence, c’est un champ alternatif de fréquence suffisamment élevée qu’il faut appliquer. Dans les applications vidéo, on procède à une inversion de la polarité du signal, par exemple de trame à trame.
Commande des cristaux liquides
Nous avons vu précédemment qu’il est possible de commander une lame de cristaux liquides via un tube cathodique et une couche photosensible (Image Light Amplifier ou ILA de Hughes). L’avantage de ce procédé est que l’image obtenue est continue et ne présente aucune structure d’échantillonnage (autre que celle imposée par le tube cathodique). On dit que l’image ILA ne présente pas de pixels.
En contrepartie, la présence du tube cathodique impose tellement d’inconvénients que la technologie est abandonnée. On réalise donc actuellement les relais optiques LCD à partir d’une lame de cristaux liquides TN, divisée en une matrice de cellules adressées par des électrodes via un réseau de conducteurs. Les technologies modernes présentent des « pixels » carrés plus ou moins visibles sur l’image.
Par rapport aux écrans LCD à vision directe, comme ceux qu’on utilise dans les téléviseurs à écran plats, la vidéoprojection a un avantage considérable : elle peut se contenter de la simple structure TN, car le faisceau lumineux est parallèle (ou presque) et traverse la lame de cristaux liquides perpendiculairement.
Il n’y a donc pas de problème d’angle de vision. En effet, la longueur du chemin optique dans le cristal liquide et donc l’importance de la rotation du plan de polarisation de la lumière dépend de son angle d’incidence, ce qui fait que l’effet produit par une lame TN est différent suivant qu’on la regarde de face ou de biais. Ce phénomène, qui a longtemps handicapé les écrans LCD, est absent en vidéoprojection.
La conception qui prévaut actuellement utilise un réseau de transistors afin d’assurer un temps d’établissement suffisamment rapide au niveau de chaque cellule (qui se comporte électriquement, en première approximation, comme un condensateur). Ainsi, chaque « pixel » d’une matrice LCD dispose d’un transistor de commutation desservi par un réseau de connexions perpendiculaires.
Celles-ci devant véhiculer un courant important en regard de leur section nécessairement microscopique, elles sont inévitablement en métal, et donc, opaques à la lumière, tout comme le transistor (le silicium réfléchit la lumière mais ne la transmet pas). Cela impose aux images LCD (qu’elles soient à écran plat ou à projection) une structure caractéristique nettement de connaissable, avec des pixels carrés séparés par des limites sombres et le transistor parfaitement reconnaissable dans un coin (voir figure 10).
De ce fait, le rendement lumineux d’un dispositif LCD est fatalement handicapé par le « taux de remplissage » (fill factor), qui correspond à une sorte d’ouverture optique, égal au rapport (souvent exprimé en %) de la surface transmettant effectivement la lumière à la surface totale de dispositif. Cette structure de pixels caractéristique de l’image LCD a longtemps été l’un des principaux reproches faits à cette technologie. Toutefois, des parades existent et ce défaut a tendance à disparaître ou à ne plus se remarquer.
Adressage des matrices actives LCD
La lame de cristaux liquides dont les molécules sont correctement disposées par ses couches d’orientation est confinée entre deux lames de verre dont les faces internes sont munies de dispositifs électriques.
L’une porte une électrode transparente commune à laquelle est appliqué le signal vidéo. L’autre porte le réseau de connexions perpendiculaires permettant d’accéder à chacune des cellules (faussement appelées « pixels »), avec, pour chacune, un transistor de commutation pour l’adressage et une électrode transparente dont la surface détermine la zone utile de la cellule (voir figure 11).
L’ensemble est fabriqué dans un process similaire aux circuits intégrés dits « hybrides » en couche mince, d’où l’appellation courante de TFT (« Thin Film Transistors »), accolé aux matrices LCD qui en résultent (voir figure 12).
L’adressage se fait séquentiellement selon un schéma de balayage, ligne par ligne et colonne par colonne. Des démultiplexeurs ou des registres à décalage sont intégrés dans le composant de manière à réduire le nombre de connexions (voir figure 13).
Conclusion (provisoire)
Nous venons de voir les principes de base de l’utilisation des LCD en transmission dans la vidéoprojection. Beaucoup d’améliorations et de perfectionnement ont été apportés pour continuer à être la technologie de vidéoprojection la plus concurrentielle en termes de rapport performances/prix, y compris pour des applications d’envergure, malgré les nombreuses critiques qu’elle récolte de manière récurrente.
C’est ce que nous nous attacherons à détailler dans la suite de cette saga, et nous verrons concrètement comment les matrices LCD s’intègrent dans des moteurs optiques simples, compacts, robustes et performants.
Et avec les épisodes précédents :
- Lien Ep1 : La vidéoprojection face aux écrans, les compromis sur l’image
- Lien Ep2 : La vidéoprojection face aux écrans led, à chaque environnement sa solution
- Lien Ep3 : Spécifier un projecteur : Spécifications relatives à l’image
- Lien EP4 : Spécifier un vidéo projecteur : Placement, installation, environnement et ergonomie
- Lien EP5 : Spécifier un vidéo projecteur : Des interfaces vidéo pour la vidéoprojection
- Lien EP6 : Spécifier un projecteur : des interfaces vidéo à très haute résolution
- Lien EP7 : Les sources de la vidéoprojection-Première partie : Les lampes
- Lien EP8 : La vidéoprojection dans tous ses états : Les sources solides LED et Lasers
- Lien EP9 : La vidéoprojection dans tous ses états : Les sources solides LED et Lasers 2ème Partie
Texte et illustrations JP Landragin